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TECHNICAL MEMORANDUM 1438

ON THE FLUTTER OF CYLINDRICAL SHELLS AND
PANELS MOVING IN A FLOW OF GAS*

By R. D. Stepanov

The equations of shells are taken in the form of the general techni-
cal theory of shallow shells (ref. 1) and shells of medium length of
V. Z. Vlasov (ref. 2). The aerodynamic forces acting on a shell are
taken into account only as forces of excess pressure according to the
formuls proposed by A. A. Iliushin (ref. 3). In this work the following =
notation is used: o and P are dimensionless coordinates of a point
on the cylindrical surface of the shell. The coordinate a, expressed
in terms of radius R, represents the distance along a generator, and
B represents the central angle. The dimensions R, h, and 1 are
the radius, thickness, and length of the cylindrical shell; E, o, and
o are Young's modulus, Poisson's coefficient, and the density of the
material of the shell, and D 1is the cylindrical rigidity. The quanti-
ties u, v, and w are components of the vector of displacement of the
shell, V 1s the velocity of flow, vy 1s the velocity of sound at

infinity, Po is the pressure of the gaseous medium at infinity, and =&

is the exponent of polytropy. The symbol w = p + iq 1is the complex
frequency, and c¢ and B are constants. Also,

2 3 2
2 hy D = Eh K v2 02 .9

R R 2) B = Po w5 T2 3a2
12R 121 - ¢ 0 © OB

The quantity By 1is the coefficient of damping, and Z 1is the trans-
verse component of the load.

1. INTTIAL RELATIONS OF THE THEORY OF CYLINDRICAL SHELLS

In the system of dimensionless coordinates «,B, in the case when
at each point & load directed along the normal to the surface acts on

* Pany ~ Pan P St T .
"0 Flattere Tsilindricheskikh Obolochek i Panelel, DvizhuShchikhsia
V Potoke Gaza." Prikladnais Matematika i Mekhaniks, vol. 21, no. 5, 1957,
pp. 64k-657.

NACA Reviewer's note: The original Russian publication contains cer-
tain typographical errors and obvious omissions in equations that have been
corrected without comment.
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the shell (X = Y = 0, 2% #'Q), the fundamental equation of shallow cylin-
drical shells in s form convenlent for solution is (ref. 1):

2 N b
v2v2v2v2¢+—_l'°———1ra°=l3-z ~(1.1)
® D

where ®(«,B) 1s & scalar function, defined according to the formilas

-

ao 0 Do
3 32 o
5
v=-§-—¢+(2+a) o | (1.2)
Jp> Q2B
v = V2v2 o

The internal forces of shallow cylindrical shells are defined through*
the function <D(or,,B) by the following group of formulas:

N

) 2
N =E-£ o*e M =_D__8__+ 32_v2v2¢
N, - B o D[R L R \2vRe
2 R aa‘h Mo R2<852+oaa’2v v
(1.3)
s -~ o -2l -0) F gage,
aa'jaﬁ R2 o OB
D d o2 22 D dd o222
2= —VYV~V ] Eem—_ vevT o
RO X R : J

Generalized transverse forces defined in the sense of Kirchoff being
necessary for the formmlstion of the boundary conditions, are computed
according to the formules
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- L (1.4)

7

The positive directions of the forces and moments are shown in fig. 1.

In this work an spproximate theory for the calculation of cylindri-
cal shells of medium length (ref. 2) will be widely used.

In the system of dimensionless coordinates «,B, with X =Y =0
but Z # O, the fundemental equation of cylindricel shells of medium
length, in the conveniently solvable form, is:

3t 2 %o 2
o, 8 ¥ L1 T _Ry (1.5)
xH 1 - 02 |3p2 3k En

Here the function &)(a,B). is defined by the formulas

-
. 3p°

v =-£§l > (1.6)
3p

_ Yy
3™

W

The internal forces of cylindrical shells of medium length are
expressed through the function ¢>l(a,B) by the following group of
formulas: )
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m 90 Ehra%l 2 (Per  der
Nl = === N2 = -ﬁ_ + +
R 3232 d&ﬁ* 1- cz\bﬁ6 St
360 3o 60, o
M = —]l— g 1 + 1 = D 1 + 1
L2 [835 .BBE:[ Y2 = 22|38 5 -
_ 1.7
L 6
s __Em%% HooD (1. o) Po, . Fe r
R 3338 R2 % 3 3 OB
__n|3M 35“’1} I I
RO|3a 386  da 3ph R3[opT  opd

In each particular case, it i1s necessary to adjoin given boundary con;
dit%ons on the edges of the shell to the differential equations (1.1)
or (1.5).

2. STATEMENT OF THE FROBLEM

The expression for the transverse load Z acting on an element of
the surface of the shell is composed of two parts: the force of ilnertila

Zy = —on X¥ - (2.1)
and the force of aerocdynamic action of the supersonic flow directed
along a generstor and flowing around the shell on the outside, which

%s taken into sccount according to the formula proposed by A. A. Iliushin
ref. 3):

Zp =B 5 _ (2.2)

Substituting expression (2.2) into equation (1.1) and taking into
account the third of the relations in the group (1.2) yields the differ-
entlal equation of small vibrations of shallow cylindrical shells:

2 2
c*2v8¢+i}2+&piv“o-3ﬁvﬁ%vu¢+%a vl“a:o (2.3)

&)-I- E at2 t
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Correspondingly, substituting the expression for the external load 2

in equation (1.5) and taking into account the third relation of group (1.6)
glves the equation of small vibrations of cylindrical shells of medium
length:

- 5 2 55
§E¢_l+c*2[§i+ﬂ2ﬁ+33p_ﬂ_a6 _BR % L BRT &%

ot 3p2 »r B at2ph Eh g apt  Eb 3¢ gt
(2.k4)
The new dimensionless quantity
0*2 = c2 h2 (2 . 5)

1-02 1282(1 - o2)
is introduced in equations (2.3) and (2.4).

In all of the following calculations By wlll be taken equal to B.

In 1954, under the guidance of A. A. Iliushin, an investigetion was
mede (refs. 4 and 5) of the self-induced vibrations of e plate moving in
& gas, which defined in many respects an approach and methods of solution
of the problem set down; certain results borrowed from the indicated
works will be introduced below without derivation.

Examined in this paper is & class of solutions of the form

®(a,B,t) = ¥(a,B)et (2.6)
where o= p + ig 1is a constant complex frequency.

In the claess of solutions (2.6), the problem of flutter consists
in determining the least velocity of flow (this veloclty will be called
the critical velocity), which on being exceeded would result in a posi-
tive reel part of the complex frequency.

Substituting equation (2.6) into equation (2.3) gives, after can-
celling b,

298y 4+ IV _ aphy - BIR 3 ohy _
V8 + Sl avhy - F aav“w 0 (2.7)
Here
2 2
A=pR o? + BZ (2.8)
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Equation (2.8) permits us, for each particular eigenvalue A, two
values of frequency to be defined:

~ B o B 1/2
oy p -t [(5‘53) ;ﬁ% (2.9)

For certain eigenvalues, let one of the roots of equation (2.9) ve

a pure imeginary number. Then from equation (2.8) it is easy to obtain
= = o 2 g2

Re A =27y =p & 4

; (2.10)

2
Im7\=7\2=-%‘;—-q

7

On the complex plane Kl,%e, equation (2.10) reprgsents the points
of the square parabola (fig. 2)*

2 _
AL = p D A2 . (2.11)

which, followihg the example of references 4 and 5, is called the para-
bola of stabllity. The region lying inside the parabola of stability
corresponds to the eigenvalues for which the roots (2.9) have a negative
real part, while the reglon lying outslide the parabola corresponds to
elgenvalues for which the real parts of one of the roots (2.9) has a
posltive real paxrt.

3. UNBOUNDED CLOSED CYLINDRICAL SHELL

For the case of an unbounded closed cylindrical shell the solution

of the fundamentel differentlal equation of smsall vibrations (2.7) will
be sought in the form

¥(a,B) = i i cmeiﬁnﬁ¥ka) (3.1)

n=1 k=1

*Pranslator's note: This apparently refers to figure 2 of refer-
erences 4 and 5 which is included with the figures of this paper for
the convenience of the resader.
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where Ck,n is a certain constent number end n and k are constant

numbers denoting the number of half weves in the meridional direction
and in the direction of the generators of the shell.

Substituting equation (3.1) into equation (2.7), yields a charac-
teristic equation from which the following expression for A results:

e
(2 + 2)°

7\1 = C*2(k2 + n2)2 +

1 (3.2)

_.BR
Ap = Eh k

/

On the complex plane A3,N, equation (3.2) represents points of a
paerdbola of the eighth power:

2 2 2 Bt pepe -2
A\ = c.2| _E°h 2 . 8 & 2 N2 + n? (3.3)
L= L232v2 - T T e

For the determination of the critical veldclty of flow, an analysis
is made of the problem of the mutual arrangement of the parabola (3.3)
with the parabola of stability (2.11) in the cases n =0 and n # 0.
For n =0 (that is, for the case when the contour of a trensverse sec-
tion of the shell remains a circle in the process of deformestion) equa-
tions (3.2) take the form:

(3.4)
Mo =-fb k

For the points of mutual intersection of the parebols (3.4) with
the parabola of stabllity, the equalities

\
2.2
plif‘l_=c*2k4+1
, (3.5)
2
BR BVR
m ¢ TEm °

are valld.
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Eliminating from the first of equations (3.5) the parameter q'
yields one equation for the determination of the points of mutual inter-
section of the two parabolas being investigated:

oo o, Lo ' (3.6)
.2

Ec*2

the solution of which will be

1/2
2 1/2
i 2Ec,2 SEc,” Cx2
From equation (3.7), it follows that, for
2k 1/2 = _ .
v, > (E2x) / | (3.8)

the parabola (3. 4), intersecting with the parabola of stablility in four
‘points, extends outside the domain of stability. Hence, it follows' that

for a velocity of flow larger than (2Ec /p)l/z, the mbtion of the shell
must be unstable. - i

For the investigation of the problem of the mutual intersection of
the parabole of stability with the parsbola (3. 3), in the general case
for n # 0 the following equation is obtalned:

18 4 kB[un2 - o Ve + WHEn + L L 2p X?gf) +
Eo 2 2

Cy' Ec*2

k2<1|-n6 - pnh' ._V_QE) +8 -0 - (5.9.)_

Ecy

Solution of equation (3‘9) gives the eight roots:

ki = +2n? [;a + (a2 - 4b + SQ%)l/%} =S

_ -1
[(-a + E@ - Ub + 8nﬂl/2>2_ 16n){] /2 (3.10)

i,
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) where . |
a = ’-l»ne - P v
Ec*2
. (3.11)
b = 2nla + L - on
0*2 J

Simllarly to that which was done above for the case n = 0, it is
posslble here also to show that the necessary and sufficient conditions
for which the parabola (3.3) intersects with the parabola of stability,
and hence falls outside the domain of stablility, reduce to the deter-
mination of the condition of the appearance of complex roots of eque-
tion (3.10).

Analyzing the expression (3.10), it is possible to set down the two
following essentially distinct necessary and sufficient conditions that
. the parsebole (3.3) intersect with the parabola of stabllity, and hence,
extend beyond the domain of stability:

. N\
. 1l/2 p
82 - 4b + 8o = o2 _E&__._ AL > 0, -a t (32 - 4 + BBA) / < 4n2
EQC*F cyl

(3.12)

In expressions (3.12) it is necessary to satisfy the inequality
8 = 4n2 - p v <0 (3.13)

Ec*?

The inequalities (3.12) and (3.13) make 1t possible to determine
the critical velocities:

Ve 2 (?gsjél/z: n <'% (C*)'l/e = Ny (3.1%)
v, 2 2Ln[zg-(lén”fc,@ + 1)] 1/2 (3.15)

The formula for the critical velocity (3.14) identically coincides

wlth the critical veloclty of flow found for a closed cylindrical shell

- with n = 0, and, as i1s seen from the inequelity (3.13), it may be used
for all values n < n, vwhich, for thin shells, corresponds to the number
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of half waves n =~ 30 to 50, that is, to such & large number of half-
waves that the form of the transverse section differs little from a __
circle.

The minimum velocity (3.15), according to n, takes place for

n = % c_,(_"l/2 and exactly coincldes with the critical. velocity found

above for n = 0.

From this analysis it follows that flutter of a closed cylindrical
shell of Infinite length in a supersonic flow can possibly take place

for veloclties of flow V > (2Ec_,(_/p)1/2 when the form of the transverse
sectlon remaine circular.

Using the formulas (2.9) and (3.2), it is possible to obtain two
values of frequency whose essential form depends on the veloclty of
flow:

2 2 k}-I- 1/2
@ o =-E (43._) pR2 *(k2+n + + BUK 4

2ph (k? + n2)2 ph

(3.16)

The solution of the differential equation of small vibrations of
shallow shells (2.3), taken in the form

o(a,p;t) = ot (nB+ia)e(pria)t (3.17)

signifles that along the generstors of the shell are propagated waves
traveling with the velocity

Vi, =-% (3.18)

Separeting the real part of the complex freguency (eq.(3.16)) from
the imaginary part ylelds

vy = £t Jk 3)2 EGz(k2+n2)2+ s )2+32V2k21/2
b ox2 | (Eph B2 * (ke + n2)e W2 02R2

1/2

R _ E_ 202 nz) B (3.19)
LDEhE p32< e ne)zﬂ

o
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Using formuls (3. 19), the veloclty of propagetion of a traveling
wave 1s determined for V = O:

1
tEc2<k2+n2)2+ k2 . BQ]/E
=5 le, _
932 k2 2

(k@ + n2)%  Lp2n2k

The minimum velocity of propagation of a traveling wave occurs for

n® = k[(c%)l/g - k:] (3.20)

1/2
vy = [%Ec* = %} / (3.21)

Here, it has the value

4. UNBOUNDED CYLINDRICAL PANEL, SIMPLY SUFPORTED ALONG ITS

GENERATORS

In the case of an unbounded cylindrical panel, simply supported along
its generators, the differential equations of small vibrations (2.3) must
be accompanied by the boundary conditions:

Uu=w=0 N2=M2=0 at B =0 and B:Bl=S/R

Defining, according to formulas (1.2) and 1.3), the displacements
and intermel forces of the shell through a potential function @, it is
possible to write the boundary conditions on the edges B =0, B = Bq

in the form

2 L 6
o = %0 5°=52=o (4.2)
32 % ¢

Representing the solution of the indicated boundary-value problem
in the form
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¢(a.,5,t) = z Z Ayn Sinﬁﬁ elkor o5t (11-})
k=1 n=1 '

and producing calculations analogous to those which were mentioned above
for the general case n # 0, gives the formuls for the critical velocity
of flow, as follows:

> B |E ot o /2 E/  4n2a2n2 52 1/2
v, 2 BL [Bhe it o2, )| o B[k .
2nst|p \ 7 gk P\1282(1 - 02)  4RPn2q2

(4.ke)

At R~ o,

Vemin 2 -’Lll[-E- _—1-—)]]'/2 at n=1 (4.5)

Formula (%.5) colncides with the critical velocity of flow for an
infinite plate, simply supported along the edge parallel to the direc-
tion of flow, which was obtained first in reference L.

*Omitting all intermediate calculations, we quote the formule of
the critical velocity of flow for the unbounded closed cylindrical shell,
found from conslderation of the differential equation of small vibrations
of cylindrical shells of medium length (2.4):

v, 2 [%? c*(l - EE)]l/E (%.6)

e

It is possible to make use of formuls (4.6) for all values of
n 2 2. From this formule it follows, that for n = «, the critical
velocity of an unbounded closed cylindrical shell of medium length coin-
cldes with the velocity of the unbounded closed cylindrical shell found
gtarting from the theory of shallow shells.

*Pranslator's note: This paragraph and the one following seem mis-
placed. They were probably intended to conclude the preceding section.
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5. FLUTTER OF CLOSED CYLINDRICAL SHELIS OF BOUNDED LENGTH

FOR DIFFERENT BOUNDARY CONDITIONS ON THE ENDS

The equation of small vibrations of shells of medium length (2.k4)
is used to exsmine a series of boundary problems. In this examination
is introduced a new variable £, connected with o by the formle

3 (5.1)

—
"R

Then in a form convenient for solution, the equation of small vibration
(2.4) is written

a%l re2 DN, )2 %0y vp 2 e LB 0yl %
*

det r*\3p2 ap ERZ 3t20pt EnRZ Ot opY EnR2 d OpY

(5.2)

To equation (5.2), in each particuler case, must be added boundary
‘conditions on the ends &€ =0 and § =

By defining, according to formulas (1.6) and (1.7), the displacements
and internal forces of the shell through @;, the boundary conditlons for

the boundary problems msy be represented in the following forms:

(2) For a shell simply supported on the ends £ = 0,8 = 1:

Iy 6 1y
W:ﬂ:o Ml—DO'EQl-l-—aﬂ}:O at £ =0 and €& =1
3p S (5.3)
(b) For a shell clemped on the ends £ =0 and & =
*o 2
W = — 1 0 QE =R —E—E;— = at £E=0 and & =

(5.4)

1 and rigidly

(c) For a shell simply supported on the end ¢§
clamped on the edge £ = O:
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v}
W=—==0 v _R %% =0 8t £ =0
ap™ % T3 apt
N ‘ X » (5.5)
w=28_o M1=20[a¢l+a°l:l=o at &=1
apH R 386 gt )

N
w=i_°_3;=o a"’__R._ESil__o at £ =0
(5.6)
2
Nlag_@ii:O S=-ELR—-6-J+&-=O at £ =1
12 322 17 3ed3p

(From the second group of relatlions it is seen that the boundary con-
ditions on the free end are partially satisfied.)

(e) For a shell simply supported on the end & = O and free on
the edge & = 1: °

L 6 " 3
w8 Ml=2°a__gl+iﬂ=o at £ =0
3 R 30 ot
\ ), 0 (5.7
2
N = BR 9% _, s - ER 9% _ 4 at £ =1
12 3e23p2 10 3ed3p )
For the class of solutions
¢l(§,B,t) = zz }: Cknxk(g)eamcos nf (5.8)
n=2 k=1
equation (5.2) 1s written after a series of simple transformations,
in the form . ) —
Ak 2 4
- Ant —= 4+ E:le(ne - l) nl‘ - AT Xy =0 (5-9)
agh dt : S

-
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where

ER® h
3
A. = B—Z 2 rd (5'10)
EhR
02 = o2 o p2k

The equation of the parabola of stability will have the form:

_ pPEmR2 ., 2 2 __ Bt
7\1—DBTZ)+—-7\2 (7\]_—ER29‘1; 7\2— EhReq (5-11)

For fixed e¢q, n, A, and A the solution of equation (5.9), in

the case when the roots of the characteristic equatlion are distinet, has
the form

-~k - . =k -
Xk(g) = Cye 15 + Coe ot + Cze 36 + Cye 8 (5.12)

The rest of the problem reduces to the determination of nontrivial
solutions Cj, for which it is sufficlent to subject the solution
(eq. (5.12)) to the boundary conditions and to require the vanishing
of the appropriate determinant A(ki). Avoiding the problem of the

form of the determinant A(ky) for the different possible combinations
of multiple roots, the function .

F(ky) = At ) (5.13)

is introduced where
(ki) = (k1 - k)(k - k3) (& - k) (ko - k3)(kp - k) (k3 - Ky)

From the expression 8(ki) it follows that all zeros of the func-
tions A\ki) will exist by virtue of zeros of S(ki), and F(ki) will

be an analytic function in the whole domain of the varistion of the
variables,
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The solution of equation (5.9) in its generel case is accompanied
with considerable mathematical difflculties, and for this reason we apply
here the method of investigation of the elgenvalues A whilch was proposed
in references 4 and 5. The essence of the method 1s contained in that,
instead of the solution of equation (5.9), the parameters of the prob-
lem A, A and the two sought for roots k3,kﬁ are expressed through
two other roots kl,k2 of the equations : =

' 3
A =-I%EE<25 + k2K + K%k, + 'k15]
_ o2 _ 1)° . kikeksk
A= Cc1 ( l) ———;E——— _—? (5-1&)

1/2
ks34 = ‘El—;ﬁ * E‘lkz - gk + kz){, )

and instead of finding the eigenvalues of equation (5.9) there is investi-
gated a system of two equations comprilsing the characteristic system

A+ iﬁ{he - 729= 0

LN

(5.15)
(n,y) = X2 _ 4
5(“)7) J
where n and ¥ are quantities connected with the roots
ky =1 + 1y ky =1 - 1y i (5.16)

of the equation and ' -

8(n,7) = 161y [2 - 27]2]1/2[()2 - 32) + 4n272] (5.17)

The left part of each of equations (5.15) represents an analytic

function of the veriebles 1 and ¢, and the problem consists in finding
a solution such as -. :

11 = 71 (n,A) 74 = 71(n,A) (5.18)

of the system, which permits, through use of the formulas
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A =-H(2 - 2)

n

v

1/2
ks = -0 & [72 - 2112] (5.19)

24 52
A= a2(? - )% + "—:f—(yg - 3n2) )

for each boundary problem, to compute the corresponding eigenvalues A
and to establish that value A at which an eigenvalue becomes complex.

The solution of the characteristic system is always easier to obtain
graphically 1f graphs of the curves defining the equations (5.15) are
penciled on one sheet in a rectanguler system of coordinates 1,y. The
general form of the curves of the characteristic system 1s shown in fig-
ure 2; the grephs of the curves corresponding to the first equation of
the system (hyperbolas) are drawn at dlfferent values A = Constant.

The rest of the problem reduces to the establishment of those values
A*i where points of the first and second real branches (5.18) coincide,

‘and 1t is lmpossible to make any deduction concerning the eigenvalues
of the examlned boundary problems.

Equating A = A*i according to equations (5.10), the velocity of

flow at which there still exists stability of the unperturbed motion,
but above which the motion mey possibly become unstable is found. Con-
sequently, for each particular boundary problem it is necessary, first
of all, to compose the expression for the second equation of the charac-
teristic system &(n,7y) = O.

The composition of the determinent A(n,y) is shown for the example
of a simply supported shell. For the determination of nonzero
Ci(1 =1, 2, 3, 4), expression (5.12) for Xp(t) 1is subjected to the

boundery conditions (5.3) and the determinant of the system thus obtained
is equated to zero:

1 1 1 1
k.2 2 kL2 k. 2
1 ko 3 i
A(kl,kz,k5,kh) = - ko k3 -~ =0
klee-kl kQEe-kE k52e-k3 k42e~kh
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The determinant having been disclosed, producing in it a replacement
of ki in terms of 7 and 7 according to the formulas (5.16) results
in

(=)
An,7) = {-2n27[72 - 2n?] /2 cosn 2n+ 2n2y [2- 2] l/ec_os Peosh [ - 2] 12

Gn*- 2 21292 s1n 7 sinh[)2 -21]2]1/2}161 =0 (5.20)

The expression A(n ,7) for different boundary problems 1s obtalned
by analogous mesans: '

(b) For a shell clemped on the ends £ = O and e = 1,

Alm,y) = 81 7[72 - 2112]1/2 [cos ¥ cosh(y?_ - 21\2)1/? -cosh 2{1 +

3nzsin ¥ sinh[)z - 2112]1/2} =0 (5.21)

(c) For & shell clamped on the end £ = O and simply supported on
the end € =1,

A('ﬂ, 7) = 81{2717 [72 - E'nz:,l/esinh 2n + -
(72 - 5"12) [72 - Ene]l/asin ¥ cosh[y2 - 21]2] 1/ -

7(72 + 12)cos 7y sinh [72 - 27{2] 1/2} =0 (5.22)

(4) For a shell clamped on the end ¢ -0 and free on the end E = 1,
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Aln,7) = 1{87(112 + 72)2 [72 - znejl/ecosh 2n +
47<26T\4 v 2/t - 4"]272) [72 - 21'12] l/acos y.cosh [72 - 21]2] 1/2 +
/2
8ﬂ2(2ﬂ272 - 7l+ +.3nh') sin 7y sinh[‘y2 - 21]2] / -

l6n7(7’+ - nll-) cos 7y sinh|:7'2 - 21)2] /2 -

16n (40292 - 30t - 7)'" ) [:72 - 2T\2:Il/esin ¥ c:osh[y2 - 2112] L2 -

3202/2(2 - 42) [2 - 2n?] l/ze‘a*‘} =0 (5.23)

(e) For & shell simply supported on the end & =0 and free on
the end £ =1,

Nn,7) = i{-2n7(72 + @) [r2 - 2n2]l/2cosh o +
17 (2 - 218)™% (= - )2+ (2 - 51\2)2] 21 4
&’y [ - on?] 1/2(72 - 43)cos 7 cosh[y? - 297 vz,
bq(3n2ok - 56 + 306 - Sn92)sin y simh[;2 - 292 Y2

7l:5'f\27l" - 76 - l9'r]1+72 + 231]6] cos 7 sinhEyz - 21\2] 1/2 +

Eya - 2112]1/2 (76+ _ll'r)l"y2 -2 - 3n6)sin y cosh [72 - 27\2] 1/2} =0

(5.24)
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Tt is noted that, for n = 0, the equation Aln,7) = O degenerates
into the characteristic equations of the beam functions fundamental for

the corresponding boundary problems. e

For all the considered boundary problems, the graphs of equations
(5.15) were constructed. With the help of These, the critical velocities
of flow (flg. 2), that i1s, the velocities above which the unperturbed
motion of the shell becomes unstable, were determined. Values of the
critical velocitles for three boundary problems (shells, simply supported
on two sides, clamped on two sldes, and clamped on one and simply sup-
ported on the other side) are quoted In table 1, for different ratios

R/1 and h/R. -

Computation of the critical velocities for the cases shown were
conducted for n = 4 at the following values of the constants:

E = 2 x 1012 dynes o = 7.8.4§_ g =0.3
cmz cm3
_ 6 8 - 4 cm -
6o = 1.01% x 10 S‘lﬁe— Vo =3k x 10t k=1

Here will be considered first the case where, for the class of thin
shells of short and medium length, four transverse half-waves correspond
to the fundamental mode of free vibrations of the one longltudinal helf-
wave. (The circle passes to an ellipse.)

It 1s possible to establish this situation if the frequency of free
vibrations of closed cylindricel shells for the case of hinged support

on the edges 1s investigated.

The minimum frequency of free vibrations of a simply supported
closed cylindrical shell, calculated according to the theory of shallow
shells, occurs at conditions coiné¢iding with conditions (5.21), at which
occurs the minimum velocity of propegation of a traveling wave along the
generators of the shell in the absence of flow. .

Because one of the equations of the characteristic system F(q,y) =0
does not depend on n, then from the first of equations (5.18) it follows
on first glance that, for other conditions equal, with increase of the
number of terms of the expansion n, self-induced vibration can possibly
occur at lower veloclties of flow. It 1s seen that there exlst waves,
the velocity of propsgation of which (for all n, larger or smsller than
n = 4) is above the velocity of propagation of the traveling wave occur-
ring for n = 4. This situation has been successfully corroborated only
for the case where the velocity of flow equals zero.
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6. APPLICATION OF THE METHOD OF BUBNOV~GALERKIN TO THE
INVESTIGATION OF SELF-INDUCED VIBRATIONS

OF CYLINDRICAL SHELLS

In the preceeding paragraph s method was presented for the investl-
gation of the eigenvalues of boundary problems resulting from the equa-~
tion of small vibrations of cylindrical shells of medium length, which
permits the determination of exact values of the critical velocities of
flow.

An analogous method could not be successfully applied to the investi-
gation of the eigenvalues of the sepesrate boundary problems using the
general equation of small vibrations of cylindrical shells (2.3). There-
fore, for consideratlon of problems on self-induced-vibrations of closed
cylindricel shells and cylindrical panels according to the theory of
curved shells, a varlational method was spplied. First, there were deter-
mined by the variational method, the critical velocities of flow for the
class of closed cylindrical shells of medium length with the different
boundexry conditions on the ends.

The values of the critical veloclities resulting from the equation
of shells of medium length, having been found in the second and third
approximations, are given in table 1. From the table it is seen that
the second approximastion according to Galerkin gives a somewhat lower
value of the critical velocity and the third approximation a somewhet
higher value of the velocity as compared with the exact value of Vy;

that is, the second and third epproximations bracket the exact value
of the critical velocity.

The good convergence of the varlational method permitted its appli-
cation to the investigation of problems of the self-induced vibretion
of closed cylindrical shells and cylindrical panels using the more
general equation of shallow shells (eq. (2.3)).

In table 2 are quoted values of the critlecal velocities for a
closed cylindrical shell simply supported on the ends, having been
found sterting from the theory of curved shells. The information given
in table 2 with the corresponding magnitudes of the critical velocitles
quoted in teble 1 makes it possible to remark that the difference in
magnitude of the critlcal velocitles does not exceed 10 to 15 percent
and, consequently, for practical purposes it is entirely Justified for
the investigation of problems of the self-induced vibration of closed
cylindrical shells to make use of the simple equation of shells of
medium length.
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Translated by Robert W. Leonard y . -
National Advisory Committee
for Aeronautics
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TAELE I.- VALUE OF THE CRITICAL VELOCITIES (m/sec) OF

FLOW FOR CLOSED CYLINDRICAL SHELLS

I:Shells simply supported on the ends (I); clamped on one
end and simply supported on the other (II);
and clamped on both ends (III)

Exact By the varlatlonal method

% % . - - 2nd approximation 5rd approximation
I Ir | Iz I IT | 11T

% 14,067.119,182 26,642 |12,278 |16, 883 [22,132 |14, 770 |20,448 |29,040
1 lé 5,934 9,092{11,239| 5,203 | 7,141| 9,352| 6,332| 8,869 [11,88
200115 3,038] 4,143| 5,754 | 2,708 3,686 | 4,812| 3,369| 4,238 6,134
_fa 1,758| 2,397| 3,3%0| 1,648 2,186| 2,822} 1,999 2,656 3,526

.]6£ 9,378|12,788{17,761| 8,197 |11,266 j1k,765| 9,847]13,939 |19,360

L (5 | 3,996] 5,396| T,95| 3,484 | 1,775] 6,249 4,308 5,913| 7;920
3°°lio 2,025| 2,769| 3,8%6| 1,687 | 2,475| 3,225 2,246| 3,31k | 4,089
1_12. 1,172| 1,598| 2,220] 1,120| 1,h4h4| 1,902} 1,390 2,01k | 2,539

% 7,033| 9,591|13,321| 6,160 | 8,461 |11,085| 7,385 |10,723 |14, 879
_1._.% 2,968| k,0u8| 5,623 2,629 3,596| &,T0L| 3,255 4,437| 5,943
“00-13;0 1,520 2,072| 2,879|.1,378| 1,874| 2,436| 1,685| 2,533 | 3,069
:%2' 879! 1,199| 1,666 86L| 1,130 3.,1;47+ 1,043 1,626| 1,976

-36= 5,626| 7,675|10,656| 4,540 | 6,781 8,880| 5,908| 8,578 |11,903
===|% | 2,375| 3,238| 1,408 2,119 2,802| 3,776| 2,586| 3,549 4,754
’116 1,216| 1,658] 2,303| 1,129| 1,512| 1,968 1,348] 2,026 2,595

% 3,751 5,115 7,104 3,322} Lk,548| 5,946 3,938| 5,718| 7,367
%% 1,583 2,159| 2,999 1,450 1,964| 2,552| 1,890| 2,366 3,169
%0. 810f 1,105| 1,535 796 1,056| 1,35%| 1,025| 1,350 1,636

25
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TABLE II.- VALUES OF CRITICAL VELOCITIES OF FLOW FOR
CLOSED CYLINDRICAL SHELLS, SIMPLY SUPPORTED ON

THE ENDS, FOUND BY THE VARIATIONAL METHOD

h R By 2nd approximation By 3rd approximation
R T m/sec m/sec
% 10, 858 14,770
1 .é_ 4,939 6,498
200 %6 2,684 3,463
% 1,689 2,233
% 7,185 . 9,847
1 Jé 3,261 4,332
300 % 1,770 2,208
flé 1,117 1,452
% 5,384 7,385
EclTé —lé 2,449 3,167
L 1,337 1,732
% 4,513 5,908
1 ;; 1,971 2,456
500 IlE 1,086 1,268
= 700 936
% 2,900 3,938
'7%6 Jg 1,348 1,775
-lla 765 1,050
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